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1 About this Report 
 
This report outlines the integration of authoritative Copernicus Climate Data from the Climate 
Data Store (CDS) into a Sustainable Asset Valuation (SAVi). It describes how several climate 
indicators obtained from the Copernicus CDS were integrated into the SAVi Wastewater model 
and how the analysis performed by SAVi has improved as a result. In light of this integration, IISD 
is able to generate sophisticated SAVi-derived analyses on the costs of climate-related risks and 
climate-related externalities. 
 
The integration of Copernicus Climate Data into other SAVi models for energy, roads, irrigation, 
buildings, and nature-based infrastructure can be found here.  
 
This document presents: 
- A summary of the literature review on the climate impact on buildings, including the 

equations that  link climate variables to the performance of buildings.  
- How the above information was used to select relevant indicators from the Copernicus 

database. 
- How outputs of the CDS datasets are integrated into the SAVi System Dynamics (SD) 

Wastewater model. 
- How simulation results can be affected by the use of this new and improved set of indicators 

 
This report is organized as follows. 
 
Literature review 
 
The literature review contains the following subsections for each of the climate variables 
discussed for wastewater treatment infrastructure:  
 

• Subsection 1: An overview of climate impact on the asset (e.g., how precipitation affects 
wastewater treatment infrastructure).  

• Subsection 2: A presentation of research results found in papers/reports that provide case 
studies on the range of impacts estimated or observed (e.g., across countries).  

• Subsection 3: A description of the methodology found in the literature for the calculation 
of climate impacts on the infrastructure asset. 

• Subsection 4: A selection of CDS datasets required by the equations. 
 
 
Integration of the  Literature Review With the CDS Dataset 
 
This section summarizes information on what datasets are being used from the Copernicus 
database and what additional processing was applied before integrating these into the SAVi 
Wastewater model. We first review the equations to determine their usefulness for the SAVi 
Wastewater model. We then assess what data requirements for each of the equations are 

https://www.iisd.org/publications/integrating-climate-data-savi-model
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available in the Copernicus database and create indicators for climate variables that are relevant 
for the equations selected. Finally, in certain cases we create indicators in the CDS Toolbox for 
first-order impacts on wastewater treatment infrastructure. Second- and third-order impacts will 
be estimated with SAVi, making use of additional equations included in the SD model. 
 
Integration of Climate Indicators Into the SAVi Wastewater Model 
 
This section explains how the CDS indicators are used in the SAVi SD model for wastewater 
treatment infrastructure. It includes an identification of specific performance indicators for each 
asset impacted by climate indicators (e.g., efficiency and cost). 
 
Behavioural Impacts Resulting From the Integration of Climate Variables 
 
This section discusses how climate variables affect asset performance in the SD model, providing 
early insights as to how the results of the SAVi analysis may change when equipping the model 
with more and better refined climate indicators (e.g., with the cost of wastewater treatment 
infrastructure being higher due to increased maintenance, the economic viability of the 
infrastructure asset, expressed as the Internal Rate of Return [IRR], will be lower than expected).  

 
Simulation Results 
 
The final section of this paper presents equations used and quantitative results emerging from 
the inclusion of climate indicators in the SAVi Wastewater model under various climate scenarios. 
This is the end product of the enhanced SAVi model, which is used to inform policy and investment 
decisions for infrastructure. Table 1 provides an overview of climate drivers, impacts and relevant 
SAVi output indicators for wastewater treatment infrastructure. 
 
The CDS datasets are accessed via the CDS application programming interface (API), and 
additional processing and packaging for use in SAVi is done offline. Technical information about 
the offline code is found in Annex I. We also selected a subset of the most-used indicators and 
created an app in the CDS Toolbox with interactive visualization for demonstration purposes. 
 
Table 1. Overview of variables and impacts implemented into the SAVi Wastewater model  

 
SAVi module Implemented 

impact 
Main climate drivers Affected output indicators 

Wastewater Urban stormwater 
runoff 

• Precipitation • Wastewater energy use 
• Energy-related cost 
• Nutrient removal 
• Environmental cost of 

nutrients 
• Social cost of carbon 

Urban flood 
indicator 

• Precipitation • Wastewater energy use 
• Energy-related cost 

https://cds.climate.copernicus.eu/apps/27053/iisd-demo
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SAVi module Implemented 
impact 

Main climate drivers Affected output indicators 

• Nutrient removal 
• Environmental cost of 

nutrients 
• Social cost of carbon 

Effect of 
temperature on 
wetland 
phosphorus 
removal efficiency 

• Temperature • Phosphorus removal in 
wetlands 

• Water quality 
• Phosphorus-related 

mitigation costs 
• Eutrophication 
• Tourism revenues 
• Fishery revenues 
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2 Wastewater treatment infrastructure 
 

2.1 Literature review 

2.1.1 Capacity utilization 
 
The amount of water treated by a Wastewater Treatment Facility (WWTF) is primarily a function 
of capacity and technical efficiency. On the other hand, there are several climate-related factor 
that affect both the extent to which the WWTF can be used, and how effectively. Impacts include 
among others high rainfall, which can lead to overflow (and hence reduces effectiveness); 
increased temperature, resulting in the growth of algae (and hence reduces effectiveness); as well 
as climate-induced power cuts, which reduce the operation time of the WWTF (and hence 
reduces effectiveness).  

2.1.1.1 Precipitation 
 

• Climate impact 
 
Precipitation impacts wastewater treatment plants in various ways: it can lead to overflow, due 
to runoff, affecting the efficiency of water treatment and the cost of operations; excessive water 
flow can lead to the shutdown of the wastewater treatment facility (WWTF).  
 

2.1.1.2 Runoff 
 

• Methodology 
 
Equation used in many articles to calculate runoff (Poullain, 2012): 
 

Q = C * i * A   
 
Q = peak rate of runoff in cubic feet per second (cfs)  
C = runoff coefficient, a dimensionless unit  
i = average intensity of rainfall in inches per hour (in/hr)  
A = the watershed area in acres (ac). 
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A typical range for runoff coefficients is provided by Bengtson (2020) (see Figure 37): 
 

 

Considerations for integration in the CDS toolbox 

- ERA5-Land monthly averaged data from 1981 to present 
- CMIP5 monthly data on single levels 
 

2.1.1.3 Overflow 
 

● Methodology  
 
Precipitation can cause overflow of wastewater, given that sewage systems are created to 
manage wastewater rather than total runoff. Literature shows that several categories of damages 
to road infrastructures can be related to distinct degrees of extreme precipitation. Specifically, 
the EWENT project (Extreme Weather impacts on European Networks of Transport) indicates the 
following (Nemry & Demirel, 2012): 
- 50 mm/24h: flooded roads, reduced pavement fraction; 
- 100 mm/24h: the sewer system fills up; water rises up the streets from drains. Rainwater fills 

the underpasses and lower laying streets. Drain well covers may become detached and cause 
danger to street traffic. Reduced visibility, flooded underpasses 

- 150 mm/24h: road structures may collapse. Bridges may be flooded. Vehicle motors damaged 
and vehicle can be flooded. Roads might be covered by water or transported debris. 

As a result, a non-linear function generating an index of severity of the rainfall events, based on 
precipitation per day, could be created (y=f(x)).  
 

Severity of rainfall = [(0, 0), (50, 1), (100, 2), (150, 3)] (precipitation per day). 
 

2.1.1.4 Temperature 
 

Figure 1 Runoff coefficients 
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● Climate impact 
 
Changes in temperatures for wastewater treatment change the efficiency of removal of 
pollutants. Higher water temperature allow the creation of algae and other parasites that reduce 
the efficiency of treatment and increase the amount of time required to treat the same quantity 
of water. At the same time, higher temperature leads to the reduction of the concentration of 
other pollutants, increasing efficiency. Impacts vary depending on the pollutant to be removed. 
 
Higher temperature have a second possible impact, on water quantity. If higher temperatures 
reduce water availability, the plant will have to stop operations. 
 

● Summary of results 
 
For precision: SS= Suspended solids; COD=Chemical Oxygen Demand; PO43- = Phosphate; NO-3 = 
Nitrate; NH+4 = Ammonium. 
Removal efficiency of nutrients varies in wastewater treatment with refuse cement or concrete. 
The first one for [SS; COD; PO43-; NO-3; NH+4] removal efficiency from 20˚C to 40˚C has an increase 
for a median particle size of 0.43 of [29%; 51%; 1%; -33%; 20%] respectively. For the second one, 
with same parameters, removal efficiency change is [11%; 14%; -34%; 5%; 15%]. 
Specifically for nitrogen, from a base case of influent sewage temperature of 7-10 ˚C and removal 
efficiency of 75-80%, a change of -1.5 to +5˚C impacts nitrogen removal efficiency by -6% per 1˚C 
in influent sewage temperature. 
 

● Results 
 
Ahsan et al. (2005) estimated the removal efficiency of a wastewater plant for different pollutants 
when there are increasing temperatures (see Figure 38).  

Figure 2 Pollutant removal efficiency and temperature 
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In a case study in Norway, Plósz et al. (2009) reported that at low daily air mean temperatures, 
heat transported by the influent sewage into the WWTP can be characterized with liquid 
temperatures between 7 and 10˚C, and with high biological nitrogen removal efficiencies (75–
80%). Moreover, during temporary increases of air temperature (-1.5 to + 5C), nitrogen removal 
efficiency decreases by 6% per 1˚C degree decrease in the influent sewage temperature (see 
Figure 39).  

 
In China, three SWIS (Soil wastewater infiltration system) efficiency has been studied under 
different temperatures by Yuan et al. (2013). All the SWIS were operated at a hydraulic loading of 
26 cm/day, COD of 233 mg/L for 10 weeks at the influent wastewater temperature of 7 ◦C, 13 ◦C, 
18 ◦C, 25 ◦C and 33 ◦C, respectively.  

o COD decreased sharply when the temperature was less than 13◦C, meanwhile the removal 
efficiency of COD was between 83.3% and 95.0% in the treatment of the soil column. 
While the operation temperature was increasing until to 33◦C, the effluent COD 
concentration decreased gradually to a very low level, and the COD removal efficiency 
could reach as high as 98.3%.  

o NH3-N: At the temperature of 7 ◦C, the average removal efficiency was below 85%, and 
the NH3- N concentration of effluent from the experimental soil column was about 4.0 
mg/L. When temperature was about 13 ◦C, the NH3-N concentration of effluent decreased 
from 4.0 mg/L to 1.0 mg/L and the average removal rate could reach as high as 97.1% 
when the SWIS operation temperature was higher than 13 ◦C.  

o TN: When the operation temperature of the SWIS was lower than 25 ◦C, the removal 
efficiency of TN was between 60.0% and 75.0%. Furthermore, the highest removal 
efficiency of TN could reach 85.0% when the SWIS was operated at 33 °C.  

o TP: No effect 
 

● Methodology 
 

Figure 3 Nitrogen removal efficiency and sewage temperature 
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Method 1 (Singh & Tiwari, Climate Change, Water and Wastewater Treatment: Interrelationship 
and Consequences, 2019) 
 
Rate of biological reaction (sedimentation): k = k20Ɵ T-20 
 
K is reaction rate constant at temperature, T 
k20 = reaction rate constant at 20˚C 
Ɵ = temperature coefficient 
T = temperature of biological reaction. 
 
Considerations for integration in the CDS toolbox 

ERA5-Land monthly averaged data from 1981 to present 
CMIP5 monthly data on single levels 
 
Method 2 (Zsirai, Buzatu, Maffettone, & Judd, 2012) 
 
Impact of temperature on viscosity. The change in the viscosity of water (in mPa s) with 
temperature within the limits of 5 and 35°C can, within an R2 value of 0.9995, be represented 
by the following quadratic equation: 
 

 
 
Another article, from Ronda and van der Graaf (2000) is cited with another regression: 
 

 
 
Considerations for integration in the CDS toolbox 

ERA5-Land monthly averaged data from 1981 to present 
CMIP5 monthly data on single levels 
 

2.2 Integration of literature review with the CDS datasets  
See section 1.2 for explanations how we selected the indicators to implement in the CDS 
Toolbox. Similarly to 1.2, each variable is available in two versions, ERA5 reanalysis (single level, 
monthly) for past data (2000-2019) and CMIP5 (single level, monthly) for future data (2006-
2100). 
 
The work performed with the CDS Toolbox is available at these links: 

• Source code: https://cds.climate.copernicus.eu/toolbox-editor/27053/indicator-
download 

• App: https://cds.climate.copernicus.eu/apps/27053/indicator-download 
 
Datasets: 

https://cds.climate.copernicus.eu/aoos/27053/was


Copernicus Climate Change Service  

2019/C3S_428h_IISD-EU/SC1- Integration of climate data in the SAVi model Page 13 of 37 

• ERA5 monthly data on single level: 2000 to 2019 
• CMIP5 monthly data on single level: 2006 to 2100 

 
Indicators created: 

• Precipitation:  
o Units: mm per month 
o Frequency: monthly 
o ERA5 variable: “Mean total precipitation rate” 
o CMIP5 variable: “Mean precipitation flux“ 
o Note: original units in mm/s 

• Runoff 
o Units: mm per month 
o Frequency: monthly 
o ERA5 variable: “Mean runoff rate” 
o CMIP5 variable: “Runoff“ 
o Note: original units in mm/s 

• Air temperature 
o Units: degrees Celsius 
o Frequency: monthly 
o ERA5 variable: “2 m temperature” 
o CMIP5 variable: “2 m temperature“ 
o Note: original units in Kelvin 

 

2.3 Integration of climate indicators into the SAVi wastewater model 

CDS climate indicators related to wastewater include impacts on wastewater volumes in the 
sewage system, wastewater treatment efficiency and capacity depreciation. The CLD of the SAVi 
Wastewater model is presented in Figure 40. Climate indicators obtained from the CDS database 
are highlighted in pink. 

 

Figure 4 Causal Loop Diagram for the wastewater sector - CDS variables included 
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Climate change impacts on wastewater volumes refers to (i) sewage overflows due to excessive 
water flow during precipitation events, (ii) a reduction in total sewage flow volume due to 
decreases in water volume, while pollution loads remain the same, and (iii) increased viscosity of 
water. During sewage overflows, vast amounts of water enter the sewage system within a short 
period of time. The stormwater mixes with the sewage, and once the total waste- and stormwater 
volume exceeds sewage capacity, wastewater is flushed into the streets and leaks into the 
environment. On the opposite hand, low precipitation may reduce the flow of water and the 
amount that is effectively treated. In addition, low precipitation and higher temperatures, 
combined with unchanged pollution creation, increase the viscosity of wastewater. This reduces 
flow speed in the sewage system and causes increased system corrosion in sewers and 
wastewater treatment plants, also resulting in higher operation and maintenance costs. 

The wastewater treatment efficiency indicator developed from the CDS toolbox refers to impacts 
on nutrient removal efficiency in treatment plants. Warmer temperatures benefit nutrient 
removal efficiencies and are a requirement for the use of certain wastewater treatment 
technologies. 

2.4 Behavioral impacts resulting from the integration of climate variables 

The sewage overflow indicator obtained from the CDS toolbox forecasts seasonal changes in 
stormwater loads and the occurrence of sewage overflows. This allows to improve the estimation 
of leakage in the SAVi model, and better represent the concentration of pollutants in 
waterbodies, related environmental impacts and costs.  
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Furthermore, wastewater treatment efficiency is reduced during peak flow events that exceed 
the capacity of WWTF. This is because of the lower amount of water treated and the reduced 
concentration of pollutants in the wastewater treated.  

The CDS Toolbox will also support the estimation of wastewater treatment efficiency using 
seasonal data. This is important due to the higher impact of wastewater and related pollutants 
during months with warm climate and months with low precipitation. Viscosity affects 
maintenance costs, nutrient removal impacts energy use for treatment and hence also affects 
operation costs of WWTFs. In addition to operation costs, removal efficiency determines the total 
capacity requirement of a wastewater system. 

Specifically on viscosity, the use of the CDS Toolbox indicator on sewage viscosity is used to 
forecast accelerated depreciation of wastewater treatment infrastructure (sewers and treatment 
plants). An increase in viscosity leads to increased settlement of sludge in sewers, increasing 
maintenance cost for dredging, and the accelerated depreciation leads to shorter asset lifetime 
and increased replacement capital cost. 

2.5 Simulation results 

The dynamics of wastewater treatment and its efficiency depend on wastewater loads remaining 
within the capacity of sewers and sewage treatment plants. The following additions were 
implemented into the SAVi Wastewater treatment model: (1) urban flood indicator, and (2) 
stormwater runoff per hectare. While the flood indicator allows to forecast the amount of months 
with extreme stormwater loads, the actual stormwater runoff per hectare provides information 
about the forecasted total loads that occur during one month. The total area considered for the 
results presented below is 10 hectares. 

2.5.1 Impact of heavy precipitation on urban flooding 

Heavy precipitation events cause urban flooding and contribute to sewage overflows. Sewage 
overflow is caused by vast storm- and wastewater loads into sewers that exceed their capacity.  

The urban flood indicator is based on below mentioned precipitation thresholds provided by 
Nemry and Demirel (2012). 

Precipitation 
(mm/hr) 

Expected impact  

50mm-100mm flooded roads 
100mm-150mm sewer overflows and potential impacts on traffic 
>150mm severe flooding, roads may collapse and bridges flooded; vehicle 

damages will occur 
Table 2: Precipitation thresholds and their impact on urban flooding (Nemry & Demirel, 2012) 

The SAVi model is operationalized using monthly precipitation data, therefore relative monthly 
precipitation is used to determine the potential flooding that may occur. The thresholds for 
relative precipitation used for this illustration are listed in Table 14. 
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Relative 
precipitation 

Projected impact 

0-2 No impacts 
2-3 Flooded roads 
3-4 sewer overflows and potential impacts on traffic 
>5 severe flooding, roads may collapse and bridges flooded; vehicle 

damages will occur 
Table 3: Thresholds for relative precipitation used for the operationalization of urban flooding in the SAVi 
wastewater model 

The equation used for the calculation of the urban flood indicator is described below. 

Urban flood indicator = IF THEN ELSE ( Relative precipitation > Threshold for urban flooding, 
Relative precipitation / Threshold for urban flooding, 1) 

The urban flood indicator is used as a multiplier in the model, indicating that a value of 1 will 
result in no impact of flooding, while any month during which precipitation exceeds the threshold 
value will see an increased risks of floods. The resulting flood indicator values for Johannesburg 
are presented in Figure 41 for the period 1979 to 2100. 

 
Figure 5: Flood indicator for Johannesburg IPSL RCP8.5 scenario 

The effect of urban flooding on sewage overflows is implemented using the flood indicator and 
an assumption on the percentage that flows out with each 1 point increase of the flood indicator. 
The percentage assumed for this simulation is 10%, indicating that if the flood indicator value 
increases from 3 to 4, and additional 10% will flow out of sewers during that month. An IF THEN 
ELSE function is used to ensure that there is no outflow if the indicator has a value of 1 (default 
value in case of no impacts). The amount of water that flows out of the sewers is presented in 
Figure 42. 
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Figure 6: Projected sewage overflows Johannesburg 

The simulation results indicate higher energy use in the sewage overflow scenario, resulting in 
higher energy costs and energy related emissions. Between 2020 and 2080, the cumulative 
energy use for wastewater treatment in the CDS climate impact scenario is projected to be 2.25% 
higher, which is equivalent to 679 MWh over 80 years, or approximately 8.5 MWh per year on 
average. The model indicates that, despite the reduction in the share of wastewater treated 
induced by the sewage overflow formulation, the total amount of nitrogen removed is 2.25% 
higher1.  

Energy costs are assumed at 20 cents per kWh and emissions are estimated using total energy 
use for N removal and an average grid emission factor of 0.7 tons per MWh. Emissions are valued 
using the Social Cost of Carbon, based on Nordhaus (2017), using 31 USD per ton of CO2e without 
escalation. In addition, sewage overflows cause wastewater to leak into the environment, which 
can have detrimental consequences for ecosystems and land productivity (UNEP, 2015)2. A value 
of USD 4.9 per kg N is applied to estimate the additional cost of N leaking into the environment 
and the avoided environmental damages through wastewater treatment. Table 15 provides an 
overview of the economic performance for selected indicators of the wastewater treatment 
sector.  

Indicator No impacts (1) Sewage overflow (1) vs no impact 

 
1 The difference in energy use is mainly driven by two factors: (1) new precipitation inputs obtained from 
the CDS database (pushing energy consumption higher relative to the no impact scenario), and (2) the 
impact of sewage overflows (reducing energy consumption).  
2 A value of USD 4.9 per kg N (EUR 4.6) released into the environment is assumed for the estimation of N 
related environmental damages and the avoided environmental cost of disposing N into the environment. 
The values indicated in UNEP (2015) range from EUR 4.6 per kg N released into the open sea to EUR 65.2 
per kg N released into wetlands.  
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Energy cost for wastewater treatment 6,036,634 6,172,436 135,803 
Cost of n leaching into the environment 0 204,343 204,343 
Social cost of carbon from wastewater treatment 654,975 669,709 14,735 

Total costs and externalities 6,691,608 7,046,488 354,880 

Avoided environmental damages through 
wastewater treatment 5,915,901 6,048,988 133,087 

Net societal cost of wastewater treatment 775,707 997,500 221,793 

Table 4: Monetized impacts of sewage overflows 

2.5.2 Climate impacts on urban runoff 

Information about urban runoff is important for urban infrastructure planners to ensure capacity 
adequacy of sewage system capacity and potential mitigation requirements. The stormwater 
runoff per hectare in urban areas is calculated using the following equation:  

Runoff quantity = Average intensity of monthly rainfall * runoff coefficient * conversion from 
mm to liters per hectare 

Figure 43 presents the simulation results for stormwater runoff in urban areas in the no impact 
and the CDS climate impact scenario. The results show a significant difference in variability and 
magnitude of stormwater runoff in the CDS climate impact scenario.  

 
Figure 7: Urban stormwater runoff per hectare 

The results indicate a cumulative total stormwater load of 6.7 billion liters and 5.83 billion liters 
in the no climate and climate impact scenario respectively between 2020 and 2100. The change 
in simulation results us equivalent to a reduction of 13% in cumulative stormwater loads in the 
CDS climate impact scenario compared to the no impact scenario. The above indicates that the 
updated formulation allows for introducing extreme precipitation events into the analysis, while 
estimating stormwater loads more accurately. For example, while the maximum monthly 
stormwater load projected in this example is 37.8 million liters in the CDS climate impact scenario, 
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which is more than four times the amount of the 9.5 million liters indicated in the no impact 
scenario.  

The increased stormwater loads increase the total energy use of the wastewater treatment 
system. Compared to the no impact scenario, total energy use is projected to be 5.4% higher, 
which is equivalent to 20.33 MWh per year or approximately 1,627 MWh over 80 years. 
Consequently, the energy cost and social cost of carbon are higher in the CDS impact scenario 
compared to the no impact scenario. This CDS impact scenario assumes that the urban 
stormwater runoff does not cause sewage overflows, hence no additional cost of N reaching the 
environment incur. 

Indicator No impacts (2) Urban flooding (2) vs no impact 

Energy cost for wastewater treatment 6,036,634 6,362,023 325,390 

Cost of n leaching into the environment 0 0 0 

Social cost of carbon from wastewater treatment 654,975 690,280 35,305 

Total costs and externalities 6,691,608 7,052,303 360,695 

Avoided environmental damages through 
wastewater treatment 5,915,901 6,234,783 318,882 

Net societal cost of wastewater treatment -775,707 -817,520 -41,813 

Table 5: Monetized impacts of urban stormwater runoff 
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Annex I: Code for establishing the CDS Toolbox-SAVi link 

Code related to offline processing of CDS Toolbox and CDS API data for the C3S_428h_IISD-EU 
project. 

How does this code relate to the CDS API ? 

This code builds on the powerful CDS API but focuses on local impact analysis specific for the 
C3S_428h_IISD-EU project. It makes it easier to retrieve a time series for a specific location or 
region, and save the result to a CSV file (a simpler format than netCDF for most climate 
adaptation practitioners). Additionally, the code combines variables across multiple datasets, 
aggregate them into asset classes (such as all energy-related variables) and perform actions 
such as bias correction (use of ERA5 and CMIP5). 

Code available for download  

The easy way is to download the zipped archive: - latest (development): 
https://github.com/perrette/iisd-cdstoolbox/archive/master.zip - or check stable releases with 
description of changes: https://github.com/perrette/iisd-cdstoolbox/releases (see assets at the 
bottom of each release to download a zip version) 

The hacky way is to use git (only useful during development, for frequent updates, to avoid 
having to download and extract the archive every time):  

- First time: git clone https://github.com/perrette/iisd-cdstoolbox.git  

- Subsequent updates: git pull from inside the repository 

Installation steps 
- Download the code (see above) and inside the folder. 

- Install Python 3, ideally Anaconda Python which comes with pre-installed packages 

- Install the CDS API key: https://cds.climate.copernicus.eu/api-how-to  

- Install the CDS API client: pip install cdsapi 

- Install other dependencies: conda install --file requirements.txt or pip install -r 
requirements.txt 

- Optional dependency for coastlines on plots: conda install -c conda-forge cartopy or see 
docs 

- Optional dependency: CDO (might be needed later, experimental): conda install -c conda-
forge python-cdo 

Troubleshooting: - If install fails, you may need to go through the dependencies in 
requirements.txt one by one and try either pip install or conda install or other methods specific 
to that dependency. - In the examples that follow, if you have both python2 and python3 
installed, you might need to replace python with python3. 

https://github.com/perrette/iisd-cdstoolbox/archive/master.zip
https://github.com/perrette/iisd-cdstoolbox/releases
https://github.com/perrette/iisd-cdstoolbox.git
https://cds.climate.copernicus.eu/api-how-to
https://scitools.org.uk/cartopy/docs/latest/installing.html
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CDS API 

Download indicators associated with one asset class. 

Examples of use: 

python download.py --asset energy --location Welkenraedt  

The corresponding csv time series will be stored in indicators/welkenraedt/energy. Note 
that raw downloaded data from the CDS API (regional tiles in netcdf format, and csv for the 
required lon/lat, without any correction) are stored under download/ and can be re-used across 
multiple indicators. 

The indicators folder is organized by location, asset class, simulation set and indicator name. 
The aim is to provide multiple sets for SAVi simulation. For instance, era5 for past simulations, 
and various cmip5 versions for future simulations, that may vary with model and experiment. 
For instance the above command creates the folder structure (here a subset of all variables is 
shown): 

indicators/ 
  welkenraedt/ 
    energy/ 
      era5/ 
        2m_temperature.csv 
        precipitation.csv 
        ... 
      cmip5-ipsl_cm5a_mr-rcp_8_5/ 
        2m_temperature.csv 
        precipitation.csv 
        ... 
      ... 

with two simulation sets era5 and cmip5-ipsl_cm5a_mr-rcp_8_5. It is possible to specify 
other models and experiment via --model and --experiment parameters, to add further 
simulation sets and thus test how the choice of climate models and experiment affect the result 
of SAVi simulations. 

Compared to raw CDS API, some variables are renamed and scaled so that units match and are 
the same across simulation sets. For instance, temperature was adjusted from Kelvin to degree 
Celsius, and precipitation was renamed and units-adjusted into mm per month from original 
(mean_total_precipitation_rate (mm/s) in ERA5, and mean_precipitation_flux (mm/s) in 
CMIP5). Additionally, CMIP5 data is corrected so that climatological mean matches with ERA5 
data (climatology computed over 1979-2019 by default). 

Additionally to the files shown in the example folder listing above, figures can also be created 
for rapid control of the data, either for interactive viewing (--view-timeseries and --view-
region) or or saved as PNG files (--png-timeseries and --png-region), e.g. 
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python download.py --asset energy --location Welkenraedt --png-timeseries --
png-region 

Single indicators can be downloaded via: 

python download.py --indicator 2m_temperature --location Welkenraedt 

The choices available for --indicator , --asset and --location area defined in the following 
configuration files, respectively: 

• controls which indicators are available, how they are renamed and unit-adjusted: 
indicators.yml (see sub-section below) 

• controls the indicator list in each asset class: assets.yml 

• controls the list of locations available: locations.yml 

Full documentation, including fine-grained controls, is provided in the command-line help: 

python download.py --help 

Visit the CDS Datasets download pages, for more information about available variables, models 
and scenarios:  

- ERA5: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-
monthly-means?tab=form   

- CMIP5: https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip5-
monthly-single-levels?tab=form  

 In particular, clicking on “Show API request” provides information about spelling of the 
parameters, e.g. that “2m temperature” is spelled 2m_temperature and “RCP 8.5” is spelled 
rcp_8_5. 

Indicator definition 

This section is intended for users who wish to extend the list of indicators currently defined in 
indicators.yml. It can be safely ignored for users who are only interested in using the existing 
indicators. 

Let’s see how 10m_wind_speed is defined: 
- name: 10m_wind_speed 
  units: m / s 
  description: Wind speed magnitude at 10 m 

The fields name and units define the indicator. Description is optional, just to provide some 
context. It is possible to provide scale and offset fields to correct the data as (data + 
offset) * scale. Here for 2m temperature: 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip5-monthly-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip5-monthly-single-levels?tab=form
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- name: 2m_temperature 
  units: degrees Celsius 
  description: 2-m air temperature 
  offset: -273.15  # Kelvin to degrees C 

# denotes a comment to provide some context. Some indicators have different names in ERA5 
and CMIP5, and possibly different units. That can be dealt with by providing era5 and cmip5 
fields, which have precedence over the top-level fields. Here the evaporation definition: 

- name: evaporation 
  units: mm per month 
  era5: 
    name: mean_evaporation_rate  # different name in ERA5 
    scale: -2592000  # change sign and convert from mm/s to mm / month 
  cmip5: 
    scale: 2592000  # mm/s to mm / month 

In that case both scaling and name depend on the dataset. In CMIP5 which variable name is 
identical to our indicator name, the name field can be omitted. In ERA5, evaporation is negative 
(downwards fluxes are counted positively), whereas it is counted positively in ERA5. 

Indicators composed of several CDS variables can be defined via compose and expression 
fields. Let’s look at 100m_wind_speed: 

- name: 100m_wind_speed 
  units: m / s 
  description: Wind speed magnitude at 100 m 
  era5: 
    compose: 
      - 100m_u_component_of_wind 
      - 100m_v_component_of_wind 
    expression: (_100m_u_component_of_wind**2 + _100m_v_component_of_wind**2)
**0.5 
  cmip5: 
    name: 10m_wind_speed 
    scale: 1.6  # average scaling from 10m to 100m, based on one test locatio
n (approximate!) 

In ERA5, vector components of 100m wind speed are provided. Our indicator is therefore a 
composition of these two variables, defined by the expression field, which is evaluated as a 
python expression. Note that variables that start with a digit are not licit in python and must be 
prefixed with an underscore _ in the expression field (only there). 

For complex expressions, it is possible to provide a mapping field to store intermediate 
variables, for readability. This is used for the relative_humidity indicator: 

- name: relative_humidity 
  units: '%' 
  era5: 
    compose: 
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      - 2m_temperature 
      - 2m_dewpoint_temperature 
    expression: 100*(exp((17.625*TD)/(243.04+TD))/exp((17.625*T)/(243.04+T))) 
    mapping: {T: _2m_temperature - 273.15, TD: _2m_dewpoint_temperature - 273
.15} 
  cmip5: 
    name: near_surface_relative_humidity 

where T and TD are provided as intermediary variables, to be used in expression. 

ERA5-hourly dataset can be retrieved via frequency: hourly field, and subsequently 
aggregated to monthly indicators thanks to pre-defined functions daily_max, daily_min, 
daily_mean, monthly_mean, yearly_mean. For instance: 

- name: maximum_daily_temperature 
  units: degrees Celsius 
  offset: -273.15 
  cmip5: 
    name: maximum_2m_temperature_in_the_last_24_hours 
  era5: 
    name: 2m_temperature 
    frequency: hourly 
    transform:  
      - daily_max 
      - monthly_mean 

This variable is available directly for CMIP5, but not in ERA5. It is calculated from 
2m_temperature from ERA5 hourly dataset, and subsequently aggregated. Note the ERA5-
hourly dataset takes significantly longer to retrieve than ERA5 monthly. Consider using in 
combination with --year 2000 to retrieve a single year of the ERA5 dataset. 

Currently CMIP5 daily is not supported. 

Netcdf to csv conversion 

Convert netcdf time series files downloaded from the CDS Toolbox pages into csv files (note: 
this does not work for netcdf files downloaded via the cds api): 

python netcdf_to_csv.py data/*nc 

Help: 
python netcdf_to_csv.py --help 
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